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LETTER TO THE EDITOR

Convex probability domain of generalized quantum
measurements
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Department of Physics, Technion—Israel Institute of Technology, 32000 Haifa, Israel

Received 9 June 1998, in final form 10 July 1998

Abstract. Generalized quantum measurements withN distinct outcomes are used for
determining the density matrix, of orderd, of an ensemble of quantum systems. The resulting
probabilities are represented by a point in anN -dimensional space. It is shown that this point
lies in a convex domain having at mostd2 − 1 dimensions.

In elementary quantum measurement theory, a test performed on a quantum system is
represented by a complete set of orthogonal projection operatorsPm, where the labelm
takes at mostd different values (d is the dimensionality of the Hilbert space, assumed
finite). The probability of obtaining outcomem of that test, following the preparation of a
quantum ensemble in a stateρ, is pm = tr(ρPm). If ρ is arbitrary, the only constraint on
these probabilities is

∑
m pm = 1.

It is well known that this type of test is not optimal if only a finite number of quantum
systems can be observed. (As a concrete example, we receive five photons from a distant
source, and we want a good estimate of their polarization. What is the best strategy?) In
such a case, more information may be derived from apositive operator valued measure
(POVM) [1, 2] with N > d different outcomes. Such a POVM is a set ofN positive
matricesAµ, which in general do not commute, but still satisfy

∑
µ Aµ = 1I, where 1I is

the unit matrix ind dimensions, andµ is an arbitrary label running from 1 toN . If the
quantum system is prepared in stateρ, the probability to get outcomeµ is

pµ(ρ) ≡ p(Aµ|ρ) = tr(ρAµ). (1)

To each preparationρ of the system, we thus associateN probabilities,p1, p2, . . . , pN .
We refer to this set of positive numbers as a pointP(ρ) in probability space. The set of all
output points is labelled byP . Density matrices form a convex set whose extreme points
are pure states [3]. The linear relation (1) between input states and output probabilities
implies that the set of pointsP is also convex:

P(ρ) ≡ P(xρ1+ (1− x)ρ2) = xP (ρ1)+ (1− x)P (ρ2). (2)

Thus the shape of the hypersurface that bounds the domain of the pointsP(ρ), for all
possible preparations of the system, is determined by the outputs for the pure states only.

Obviously
∑

µ pµ = 1, so that the pointsP(ρ) lie on a hyperplane of dimension(N−1).
However, the results of generalized measurements are subject to stronger constraints (which
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may be important for the statistical analysis of experimental results). LetD be the number
of linearly independent parameters inρ (for a generic density matrix in ad-dimensional
complex Hilbert space,D = d2 − 1). The following proposition will now be proved:If
N > (D + 1), the output of any POVM is confined to aD-dimensional subspace.

Indeed, let us write the elements of a generic density matrix in terms of real (symmetric)
and imaginary (antisymmetric) parts,

ρmn = ξmn + iηmn. (3)

There ared(d − 1)/2 independent elementsηmn and (d + 2)(d − 1)/2 independentξmn,
because of the condition trρ = 1 which can be written

ξdd = 1−
d−1∑
n=1

ξnn. (4)

Likewise, the elements of each POVM matrixAµ, of orderd, can be written asxµmn+ iyµmn
in terms ofd2 real parameters. We thus obtain from equation (1),

pµ(ρ) =
d−1∑
m=1

(xµmm − xµdd)ξmm + 2
d∑

m=1

∑
n>m

(xµmnξmn + yµmnηmn)+ xµdd . (5)

ThusP(ρ) is obtained fromρ by an affine transformation [4]

p = Mr + c (6)

wherep is a ‘vector’ consisting of anyN − 1 componentspµ (the remaining component is
obtained from

∑
µ pµ = 1). Likewiser is a vector ofD linearly independent parameters

of ρ. The matrixM, with N − 1 rows andD columns, depends only on the POVM used
for the test; andc is a vector whoseN − 1 components arexµdd , which also are parameters
of the POVM. Explicitly, theµth row of M, which is

(x
µ

11− xµdd) . . . (xµd−1,d−1− xµdd) 2xµ12 . . .2x
µ

d−1,d 2yµ12 . . .2y
µ

d−1,d (7)

and

rT = (ξ11 . . . ξd−1,d−1 ξ12 . . . ξd−1,d η12 . . . ηd−1,d ) (8)

haveD = d2− 1 real components.
If N − 1> D, the rank ofM is at mostD, and anyD+ 1 vectorsp̃ = Mr are linearly

dependent. A translation by the constant vectorc in the (N − 1)-dimensional vector space
transforms aD-dimensional subspace into anotherD-dimensional subspace. Thus the output
of any POVM on a system whose density matrix hasD linearly independent parameters is
confined to aD-dimensional subspace of the probability space.

Next, let us examine the shape of the surface that encloses the domain ofP(ρ). The set
of density operators, and therefore the set of probabilities, are convex. The extreme points
of these sets are the pure states, which are defined by 2(d − 1) real parameters, and the
probabilities corresponding to these pure states, respectively. Thus any interior point of the
D-dimensional setP is a convex combination of the extreme points of that set, which lie
on a 2(d − 1)-dimensional hypercurve.

Note that any density matrixρ of rank d can be written as a convex combination of
no more thand pure density matrices, corresponding to the eigenvectors ofρ. As a result,
any interior point ofP can be obtained from at mostd extreme points. This result ought
to be compared with Caratheodory’s theorem [4], which states that any interior point of an
arbitrary convex set of dimensionD can be obtained as a convex combination ofD + 1
(or fewer) extreme points of that set. Here,D + 1 = d2. The smaller number of extreme
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points needed in the present case is due to the fact that density matrices are not anarbitrary
convex set (they are positive and have unit trace).

As a simple example, consider the case of spin-1
2 systems. Their states can be described

by means of a Bloch sphere. The pure states correspond to points on the surface of the
sphere, and mixed states lie in its interior. With our notations, we have

rho =
(

x11 x12+ iy12

x12− iy12 1− x11

)
(9)

where the three parameters are subject to the positivity condition

x11(1− x11)− x2
12− y2

12 > 0. (10)

The transformation (6) is linear. Therefore the Bloch sphere is transformed into another
quadratic surface, usually an ellipsoid. Exceptionally, if a POVM element has unit norm
(so that the correspondingpµ can be equal to 1, and then all the otherpµ vanish), we have
a straight segment.

In particular, consider a POVM with four elements,Aµ = (1I+aµ ·σ)/4, where the four
unit vectorsaµ form a regular tetrahedron in a real three-dimensional Euclidean space, and
σ denotes the three Pauli matrices. Likewise, any stateρ can be written asρ = (1I+n·σ)/2.
We thus have

pµ = tr(ρAµ) = (1I+ aµ · n)/4 (11)

whence
4∑

µ=1

(pµ − 1
4)

2 = n2/12. (12)

The Bloch sphere is thus mapped into a three-dimensional sphere of radius 1/
√

12, centred
at pµ = 1

4, and lying in the hyperplane
∑

µ pµ = 1. If we want to parametrize that
hyperplane with three of thepµ, we substitute in the above equationp4 = 1−p1−p2−p3.
We then obtain an ellipsoid in a three-dimensional space, as shown in figure 1. It is also
possible to use as coordinates suitable linear combinations of thepµ, such as

x = p1+ p2− p3− p4

y = p1− p2+ p3− p4

z = p1− p2− p3+ p4.

(13)

The Bloch sphere is then mapped into a spherex2+ y2+ z2 6 1
3.

The case of spin-1 systems is more complicated. A generic density matrix can be written
in terms of its eigenstates as

ρ =
3∑

j=1

λj |vj 〉〈vj |. (14)

This is as a convex combination of three extreme points. Any pure state, such as the above
eigenstates, can be parametrized, with a suitable choice of its phase, as

|v〉 = (sinθ cosφeiα, sinθ sinφeiβ, cosθ) (15)

where

06 θ, φ 6 π/2 and 06 α, β < 2π. (16)

All the components of the corresponding pureρ, which is a matrix of rank 1, are functions
of the four parametersθ , φ, α, andβ. Thus all the probabilitiespµ = tr(ρAµ) are also
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p3

p1

p2

Figure 1. The probability ellipsoid that corresponds to the
Bloch sphere is tangent to the planep1 + p2 + p3 = 1 (that
is p4 = 0) at the pointp1 = p2 = p3 = 1

3 and likewise it
is tangent to each coordinate plane at the point where the two
coordinates in that plane are13 .

functions of these four angles. This gives the extreme points of the setP : they form
a four-parameter hypersurface in an eight-dimensional spaceS (which is itself embedded
in theN -dimensional space of thepµ). The rest of the boundary ofS, corresponding to
density matrices of rank two, lies on the segments between any pair of extreme points.
The interior points ofS can be obtained by a convex combination of three suitably chosen
extreme points, as in equation (14). All these considerations are readily extended to quantum
systems whose Hilbert spaces have more than three dimensions: there are(d − 1) polar
angles likeθ andφ, and(d − 1) phases likeα andβ.

Finally, let us consider potential applications of the above results to the analysis of
experimental data. The probabilitiespµ cannot be measured exactly, as this would require
testing an infinite number of quantum sytems. If onlyn systems are available, and theµth
outcome is found to occurnµ times (so that the experimenter records a set ofN integers
or zeros), then theN ratiosqµ = nµ/n are the only data available for evaluating the true
pµ. Obviously,

∑
µ qµ = 1, just like

∑
µ pµ, but the other constraints onpµ may not be

satisfied. In particular, ifN > D + 1, the pointQ = {qµ} will not in general lie in the
hyperplane of dimensionD to which the pointP is restricted.

How far canQ be from the trueP? Each one of the experimental datanµ has an
expected binomial distribution with dispersion

1nµ = [npµ(1− pµ)]1/2 ' [nµ(n− nµ)/n]1/2 (17)

where the last expression is valid ifnµ � 1. We can imagine an error box with sides equal
to 1qµ, centred at the pointQ, and we then have to examine where that error box overlaps
with the hyperplane to whichP is constrained.

Obviously, it is best to design the experiment so as to haveN = D + 1 = d2, and
not more than that. A larger value ofN leads to a less efficient use of the experimental
data. This result is reminiscent of Davies’s theorem [5] which deals with a related question,
namely how to maximize the mutual information obtainable from a set of non-orthogonal
signals. The theorem asserts that no more thand2 outputs are needed.

If N = D+ 1, the only question is whetherQ lies in the convex domain ofP , namely
whether the resultingρ, obtained by solving equation (1), is a positive matrix. If it is, then
Q is the best estimate for the trueP . In the opposite case, the experimenter should either
test a larger number of samples, or use maximum likelihood or similar nonlinear methods
[6] to analyse the existing data.



Letter to the Editor L675

DRT was supported by a grant from the Technion Graduate School. Work by AP was
supported by the Gerard Swope Fund, and the Fund for Encouragement of Research.

References

[1] Helstrom C W 1976Quantum Detection and Estimation Theory(New York: Academic)
[2] Peres A 1993Quantum Theory: Concepts and Methods(Dordrecht: Kluwer)
[3] Davies E B 1976Quantum Theory of Open Systems(New York: Academic)
[4] Kelly P J and Weiss M L 1979Geometry and Convexity(New York: Wiley)
[5] Davies E B 1978IEEE Trans. Inf. TheoryIT-24 239
[6] Hradil Z 1997Phys. Rev.A 55 1561


